On polynomial numerical hulls of normal matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

Some Results on Polynomial Numerical Hulls of Perturbed Matrices

In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.

متن کامل

On higher rank numerical hulls of normal matrices

‎In this paper‎, ‎some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated‎. ‎A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given‎. ‎Moreover‎, ‎using the extreme points of the numerical range‎, ‎the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$‎, ‎where $A_1...

متن کامل

some results on the polynomial numerical hulls of matrices

in this note we characterize polynomial numerical hulls of matrices $a in m_n$ such that$a^2$ is hermitian. also, we consider normal matrices $a in m_n$ whose $k^{th}$ power are semidefinite. for such matriceswe show that $v^k(a)=sigma(a)$.

متن کامل

Ela Polynomial Numerical Hulls of Order

In this note, analytic description of V 3 (A) is given for normal matrices of the form A = A 1 ⊕ iA 2 or A = A 1 ⊕ e i 2π 3 A 2 ⊕ e i 4π 3 A 3 , where A 1 , A 2 , A 3 are Hermitian matrices. The new concept " k th roots of a convex set " is used to study the polynomial numerical hulls of order k for normal matrices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2004

ISSN: 0024-3795

DOI: 10.1016/j.laa.2003.12.025